Synthesis of Oxygen Deficient TiO2 for Improved Photocatalytic Efficiency in Solar Radiation

نویسندگان

چکیده

The photocatalytic activities of TiO2 have been limited mainly to absorbing in the ultraviolet spectrum which accounts for only 5% solar radiation. High energy band gap and electron recombination nanoparticles are responsible its limitations as a photocatalyst. An oxygen deficient surface can be artificially created on titanium oxide by zero valent nano iron through donation excess electrons. A visible light active nanoparticle was synthesized current investigation simple chemical reduction using sodium boro-hydride. physical textural properties photocatalyst measured scanning/ transmission microscopy while FTIR, XRD nitrogen sorption methods (BET) were employed further characterizations. Photochemical decoloration orange II dye solution presence an UV spectrophotometer. resulting has lower band-gap, smaller pore sizes, enhanced photo-catalytic properties. (88%) (II) salt (pH 2) under simulated possible at 20 min. This study highlights effect defects, crystal size band-gap photo-catalytical property impacted iron. It opens new window exploitation instability dopant ions creation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications.

Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxy...

متن کامل

Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated ch...

متن کامل

Enhancing Photocatalytic Activity of Nitrogen Doped TiO2 for Degradation of 4-Chlorophenol under Solar Light Irradiation

The nitrogen doped TiO2 as heterogeneous photocatalyst via sol-gel method were successfully synthesized. The physicochemical, morphological and textural characteristics of the obtained TiO2 samples were characterized by advanced analysis techniques. The photocatalytic activity of the samples were evaluated for degradation of 4-CP under solar irradiation. The as-synthesized photocatalysts were c...

متن کامل

Synthesis of three-dimensional AgI@TiO2 nanoparticles with improved photocatalytic performance.

Three-dimensional (3D) TiO2 with an acanthosphere-like morphology composed of nanothorns has been used as a suitable support to fabricate a visible-light-induced 3D AgI@TiO2 nanophotocatalyst. The structural characterization revealed that the size of the obtained AgI@TiO2 nanocomposite was close to that of pristine TiO2 particles, where AgI nanoparticles were evenly dispersed on the surfaces of...

متن کامل

Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2021

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal11080904